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Areal data
Areal data consists of a single aggregated measure per areal unit,
which may be a binary, count, or continuous value.

I Event counts for low-population counties display greater
variance - noisy data acts like scratches, dirt on an image

I Spatial smoothing removes noise by borrowing information
from neighboring regions; allows big picture trends to be seen
more clearly



Areal data, continued

Areal units:

I partition a multi-dimensional volume D into a finite number of
sub-volumes with well-defined boundaries

I the set of areal units is fixed

Geospatial data in R:

I Shapefile format: contains geometric locations (points, lines,
and polygons) and associated attributes.

I R package spdep provides functions to compute and extract
neighbor relationships from shapefile data.

https://en.wikipedia.org/wiki/Shapefile
https://cran.r-project.org/web/packages/spdep/spdep.pdf


Data structures for encoding neighbor relationship

N × N Adjacency matrix:

I entries {i,j} and {j,i} are 1 when regions ni and nj are
neighbors, zero otherwise

Undirected graph:

I regions are vertices

I pairs of neighbors are edges

For sparse matrices, graph representation is more efficient (memory,
I/O, processing)



Neighbor releationship is an abstraction.

Common metric: shared boundary - line (rook) or point (queen).

For large maps, this is (generally) very sparse.

Example: NYC census tract data used for Stan Case Study.

I 1921 census tracts: 3,690,241 cells in a 1921 X 1921 matrix, of
which 3,679,319 are zero.

I representation as an edgeset: 10,922 cells (2 parallel arrays,
5461 edges), i.e., just the non-zero entries.



Graph of adjoining census tracts for Brooklyn



Algorithmic complexity of Operations on Matrices

Big-O notation classifies algorithms according to how processing
time and/or memory usage grows as the size of the input grows.

Complexity of the following operations on an N × N matrix:

I multiplication
I inversion
I determinant

O(N3)

Space required for a full n × n matrix: O(n2)

Space required for a sparse n × n matrix as an edgeset: O(k n)
where k is the average fan-out (neighbers per node).



Conditional Auto-Regressive (CAR) models, Besag 1974

I data consists of per-region observations for area with n fixed
regions

I random effects for each region is conditional only on
neighboring regions

Use an n× n adjacency matrix W to specify neighborhood structure:

I entries wi ,j and wj,i are positive when regions ni and nj are
neighbors, zero otherwise

I neighbor relationship i ∼ j - the neighbors of a region i are the
regions which have non-zero entries in row or column i of W



Conditional specification of the CAR model

Model spatial interactions as an n-length vector φ = (φ1, . . . , φn)T ,
where each φi is a normal random variate with a mean which is
conditional on the values of its neighbors and unknown variance:

φi | φj , j 6= i ∼ Normal(
n∑

j=1
wijφj , σ)

φ is a Gaussian Markov Random Field (GMRF)



Joint specification of the CAR model

φ ∼ Normal
(
0, [τD(I − αW )]−1

)
φ is a multi-variate normal, with mean 0 and covariance matrix
[D(I − αW )]−1

I τ is the precision (inverse variance)
I D is an n × n diagonal matrix where Di ,i is the number of

neighbors for region wi and all other entries are 0.
I I is an n × n identity matrix.
I α is a parameter between 0 and 1 which controls the amount

of spatial correlation, 0 corresponds to spatial independence
and 1 corresponds to complete spatial correlation.

I W is the n × n adjacency matrix



φ ∼ Normal
(
0, [τD(I − αW )]−1

)
When 0 < α < 1, the covariance matrix is positive definite.

BUT computing the log probability density requires taking the
determinant of the covariance matrix.

When α = 1, the covariance matrix is singular, improper
distribution - can only be used as a prior

Additional constraint needed to provide centering: e.g.
∑

i φi = 0.



Intrinsic Conditional Auto-Regressive (ICAR) Models, Besag,
1974
Spatial interactions for fixed set of N areal units is N-length vector

φ = (φ1, . . . , φn)T

Neighborhood structure specified by N × N adjacency matrix W :

I W entries wi ,j and wj,i are 1 when regions ni and nj are
neighbors, zero otherwise

Number of neighbors for each region specified using N ×N diagonal
matrix D:

I diagonal elements di ,i contain number of neighbors for region
ni , all other elements zero



Conditional specification:

p (φi |φj j 6= i) = Normal
(∑

i∼j φi

di ,i
,

1
di ,iτi

)

where τi is the precision (inverse variance)

Joint specification:

φ ∼ Normal(0, [τ (D −W )]−1).

Unit mulitivariate Gaussian: τ = 1, joint distribution rewrites to
pairwise difference formulation:

p(φ) ∝ exp

−1
2
∑
i∼j

(φi − φj)2


NOTE: ICAR model is non-identifiable, must add the constraint∑

i φi = 0.



Stan program: ICAR prior, soft sum-to-zero constraint

The sum-to-zero constraint is implemented by putting a prior on phi
as follows:
data {

int<lower=0> N;
int<lower=0> N_edges;
int<lower=1, upper=N> node1[N_edges]; // node1[i] adj to node2[i]
int<lower=1, upper=N> node2[N_edges]; // and node1[i] < node2[i]

}
parameters {

vector[N] phi;
}
model {

target += -0.5 * dot_self(phi[node1] - phi[node2]);

// soft sum-to-zero constraint on phi,
// equivalent to mean(phi) ~ normal(0,0.01)
sum(phi) ~ normal(0, 0.01 * N);

}



data {
int<lower=0> N; int<lower=0> N_edges;
int<lower=1, upper=N> node1[N_edges];
int<lower=1, upper=N> node2[N_edges];
int<lower=0> y[N]; // count outcomes
vector<lower=0>[N] E; // exposure

}
transformed data {

vector[N] log_E = log(E);
}
parameters {

real beta0; // intercept
vector[N] phi; // spatial effects
real<lower=0> sigma; // variance (non-centered)

}
model {

y ~ poisson_log(log_E + beta0 + phi * sigma);
beta0 ~ normal(0.0, 2.5);
sigma ~ normal(0.0, 5.0);
target += -0.5 * dot_self(phi[node1] - phi[node2]);
sum(phi) ~ normal(0, 0.001 * N); // soft sum-to-zero constraint

}
generated quantities {

vector[N] mu = exp(log_E + beta0 + phi * sigma);
}







Besag York Mollié: Poisson GLM + ICAR + normal RE

Yi |ψi ∼ Poisson(Ei eψi ),

for i ∈ 1 : N, where
ψ = xβ + θ + φ

and

I x is the matrix of explanatory spatial covariates such that xi is
the vector of covariates for areal unit i . The coefficients β are
called “fixed effects.”

I θ is an ordinary random-effects components for non-spatial
heterogeneity.

I φ is an ICAR spatial component.

I strong hyperpriors on φ and θ equal for emphasis on both
spatial and non-spatial variance (following Bernardinelli et
al. 1995)



BYM2: Reibler et al 2016
Combined random effects component:

θ + φ = σ(
√
1− ρθ∗ +√ρφ∗)

I σ ≥ 0 overall standard deviation
I ρ ∈ [0, 1] models how much of the variance comes from the

spatially structured effect and how much comes from the
spatially unstructured effect

I θ∗ ∼ N(0, I) is the unstructured random effect with fixed
standard deviation 1

I φ∗ is the ICAR model scaled so Var(φi) ≈ 1



data {
int<lower=0> N;
int<lower=0> N_edges;
int<lower=1, upper=N> node1[N_edges];
int<lower=1, upper=N> node2[N_edges];

int<lower=0> y[N]; // count outcomes
vector<lower=0>[N] E; // exposure
int<lower=1> K; // num covariates
matrix[N, K] x; // design matrix

// scales the variance of the spatial effects
real<lower=0> scaling_factor;

}
transformed data {

vector[N] log_E = log(E);
}



parameters {
real beta0; // intercept
vector[K] betas; // covariates
real<lower=0> sigma; // overall standard deviation
real<lower=0, upper=1> rho;
vector[N] theta; // heterogeneous effects
vector[N] phi; // spatial effects

}
transformed parameters {

vector[N] convolved_re;
convolved_re = sqrt(1 - rho) * theta

+ sqrt(rho / scaling_factor) * phi;
}
model {

y ~ poisson_log(log_E + beta0 + x * betas + convolved_re * sigma);
...



model {
y ~ poisson_log(log_E + beta0 + x * betas + convolved_re * sigma);

beta0 ~ normal(0.0, 2.0);
betas ~ normal(0.0, 2.0);
theta ~ normal(0.0, 1.0);
sigma ~ normal(0, 2.0);
rho ~ beta(0.5, 0.5);

target += -0.5 * dot_self(phi[node1] - phi[node2]);
sum(phi) ~ normal(0, 0.001 * N); // soft sum-to-zero constraint

}
generated quantities {

vector[N] eta = log_E + beta0 + x * betas + convolved_re * sigma;
vector[N] mu = exp(eta);

}



Raw events vs. BYM2 model fit, all NYC census tracts



Raw events vs. BYM2 model fit, Brooklyn



Case Study: “Spatial Models in Stan: Intrinsic Auto-Regressive
Models for Areal Data”

http://mc-stan.org/users/documentation/case-studies/icar_stan.html
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